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Abstract

A variety of in�ltration techniques can be used to fabricate solid materials, particularly
composites. In general these processes can be described with at least one time dependent
partial di�erential equation describing the evolution of the solid phase, coupled to one or
more partial di�erential equations describing mass transport through a porous structure.
This paper presents a detailed mathematical analysis of a relatively simple set of equations
which is used to describe chemical vapor in�ltration. The results demonstrate that the
process is controlled by only two parameters, � and �. The optimization problem associated
with minimizing the in�ltration time is also considered. Allowing � and � to vary with time
leads to signi�cant reductions in the in�ltration time, compared with the conventional case
where � and � are treated as constants.
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1 Introduction

A variety of materials are produced by in�ltration processes. In these techniques a uid
phase (i.e., a gas or a liquid) is transported into a porous structure, where it then reacts to
form a solid product. These methods are particularly important for producing composite
materials, where the initial porous preform is composed of the reinforcement phase (i.e.,
�bers, whiskers, or particles) and in�ltration produces the matrix. ([1]),([2]). A detailed
assessment of the relevant reaction and mass transport rates during in�ltration requires
mathematical modeling, using a minimumof two coupled partial di�erential equations which
describe changes in the reactant concentration and the solid structure as a function of both
position and time. This type of modeling can also be extended to analyze the optimization
and control of in�ltration processes.

The research presented here speci�cally considers optimization for a set of two equations
which describe chemical vapor in�ltration (CVI). In this process a vapor-phase precursor is
transported into the porous preform, and a combination of gas and surface reactions leads
to the deposition of the solid matrix phase. In recent years a number of researchers have
developed mathematical descriptions of CVI. While these models do not provide complete,
detailed representations of CVI, they provide an excellent starting point for mathematical
and computational research on the equations which describe in�ltration processes in general.
During in�ltration the formation of the solid product phase eventually closes o� porosity at
the external surface of the body, blocking the ow of reactants and e�ectively ending the
process. This is a key feature of most in�ltration processes. It is usually desirable to
maximize the amount of solid formation that occurs before this endpoint is reached. This
optimization goal is often linked to another objective. For example, CVI often requires
extremely long times, so it is also important to minimize the total processing times.

The paper is organized as follows: In Section 2 we derive a simple set of two equations
that models the in�ltration processes, and we show how to get these equations as a subcase
of the general system. These are nonlinear partial di�erential equations. We also derive
initial and boundary conditions for the model equations. In Section 3 we present a detailed
mathematical analysis concerning the behavior of the solutions in space and time. This
analysis provides insights into the behavior of the process. In Section 4 we de�ne the concept
of a successful process and get conditions on the paremeters of the problem for a process to
be successful. In particular we formulate an optimization problem for the minimum time it
takes for the process to settle. In Section 5 we present numerical experiments to validate the
theory. We also discuss how to design the experimental parameters to get faster successful
processes.

2 Formulation

A mathematical description of in�ltration requires one or more partial di�erential equa-
tions which describe the evolution of the matrix (i.e., the solid phase), and one additional
partial di�erential equation for each chemical species in the uid phase. For a simple pore
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structure, the continuity equation for species i is

@("Ci)

@t
+r �Ni =

nrX
r

�irRr (1)

where t is time, " is the void fraction of the media, Ci is the concentration of species i, nr
is the number of the gaseous species, �ir is the stoichiometric coe�cients for the ith gaseous
species in the rth reaction, and Rr represents the volumetric reaction rate of reaction r.

The basic partial di�erential equation(s) which describe reaction and mass-transport
in porous media (i.e., the uid phase) are well-established [6, 8]. The Dusty-Gas model
[9] describes multicomponent di�usion and convection. Neglecting thermal di�usion, the
relationship between the molar uxes, Ni, is given by [10]:

Ni

DKi

+
RT

P

X
j 6=i

CjNi � CiNj

DMij

= �rCi �
CiBe

�DKi

rP (2)

where Be is the permeability of the porous media, � is the viscosity of the mixture, and P is
the total pressure. DMij

and DKi
are the e�ective binary di�usivity for species i and j and

the e�ective Knudsen di�usivity of species i, respectively.
The change in the solid structure is equivalent to considering the change in the void

fraction, " (i.e., the volume fraction of gas inside of the porous solid). The evolution of " is
given by:

@"

@t
= �uSv(") (3)

where u is the rate at which the solid product grows (volume/area/time) and Sv(") is the
gas/solid surface area per unit volume of the porous solid.

The simplest formulation for the uid phase is obtained by considering one reacting
species. For highly diluted reactant systems, the Dusty-Gas model can be simpli�ed to give
the following approximate expression for the ux:

N = �D@C

@Z
(4)

where C is the concentration of diluted species and Z is the distance into the preform. The
e�ective di�usivity of the diluted species, D, can be expressed as

D =
"

�
DMm [1 +Nk(")]

�1 (5)

where m refers to the bulk species, DMm is the binary di�usion coe�cient for M in m,
Nk is the ratio of the Knudsen di�usion coe�cient and DMm, and � is the tortuosity factor.

For a di�usion-limited process in one spatial dimension, using Eq. (4), Eq. (1) becomes:

@("Ci)

@t
=

@

@Z

"
D
@C

@Z

#
� uSv(")

V
M

(6)

where V
M
is the molar volume of the solid product. The last term in Eq. (6) describes the

rate at which the gas-phase precursor is consumed (or created) by chemical reactions inside
of the pores, with the assumption that there are no homogeneous gas-phase reactions.
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A speci�c CVI model requires expressions for u, Sv, and D. Our objective in this work is
to use simple formulations for each, as a basis for assessing the general behavior of in�ltration
problems. As an example, consider the formation of carbon matrix composites using a
hydrocarbon in an H2 carrier gas, where the following net reaction occurs:

Cm Hn (g)
H2�! m C(s) + 1

2
n H2(g) (7)

The form of Eq. (6) is based on the assumption that the MTS concentration, Cr, is dilute
(i.e., the reactant concentration is much smaller than the carrier gas concentration). If the
carbon growth rate is proportional to the precursor concentration, then:

u = kCr (8)

where k is the reaction rate constant.
The preforms used for CVI typically have a complex porous structure. However, a cylin-

drical pore is often used to formulate simple models. This leads to the following expression
for Sv:

Sv(") =
2
p
"o
p
"

ro
(9)

where ro is the initial pore radius and "o is the initial concentration of ".
Substituting Eqs. (8) and (9) into Eqs. (3) and (6) gives the following forms:

@�

@t
= �1

2
�c (10)

@

@z

"
�2

�
[1 +Nk(�)]

�1 @c

@z

#
= �2�c (11)

where:

� =
p
" (12)

c =
Cr

Co

(13)

z =
Z

L
(14)

�2 =
2k
p
"oL

2

V
M
roDMm

(15)

� =
2k
p
"oCo

ro
= �2VMCoDMm

L2
(16)

where L is the half-thickness of the preform, Co is the concentration of the reactant species
in the bulk gas-phase (i.e., outside of the preform). The expression for � (15) is based on
the assumption that u is determined by a �rst order reaction, where k is the rate constant
(i.e., u = kCr). Note that �2 is dimensionless and that � has units of inverse time.

3



The parameters �2 and � depend on the three key process variables: T; P , and Co. T; P
do not appear explicitly in Eqs. 15 and 16, however, k typically obeys an Arrhenius-type
exponential temperature dependence, and DMm varies with both temperature and pressure.
If the process variables are all held at single �xed values throughout the process, then �2

and � di�er only by a lumped constant. However if one or more of the process variables is
changed as in�ltration proceeds, then the proportionality between �2 and � will also vary.
As an example of this, we consider a case where �2 decreases while � is held constant (see
Section 5). One way of accomplishing this in practice is to reduce the temperature during
the course of the process, such that �2 decreases (because k usually decreases faster than
DMm as T decreases). To hold � constant, Co must be increased in a way which directly
o�sets the decrease in k.

The time derivative in Eq. (6) has been removed in Eq. (11). This is permissable because
solids are much denser than gases, such that the time-scale for changes in the Cr pro�le is
much shorter than the time scale associated with changes in the solid structure. For gas-
solid reaction processes such as CVI, this is sometimes referred to as the pseudo steady-state
approximation [7]. Transforming " to � simpli�es equation (10). Basically � is propotional
to Sv, so it is also possible to view � as a dimensionless surface area per volume.

The boundary conditions that are most often used for CVI models are to �x the con-
centration at the outer surface of the preform at Co, and to assume that di�usion occurs in
from two opposite sides, such that there is no net ux in the middle of the preform (i.e., at
Z = L):

c(0; t) = 1 (17)

cz(1; t) = 0 (18)

The initial condition is given by:

"(z; 0) = "o (19)

During CVI, the in�ltration kinetics are controlled by di�usion and the deposition reac-
tion. To achieve relatively uniform in�ltration, di�usion must be fast relative to the deposi-
tion rate. This is typically accomplished by choosing processing conditions that result in a
slow deposition rate, which usually leads to long in�ltration times. Thus, a key processing
objective is to obtain the desired amount of in�ltration in the shortest possible time. The
total amount of in�ltration in the preform is given by integrating over z:

�"(t) =
Z 1

o
"(z; t)dz (20)

It is generally important to obtain the desired density (i.e., void fraction), "f , in the
shortest possible time. Thus, the optimization problem of interest corresponds to determin-
ing the shortest time where "(t) = "f , for values of "f that are signi�cantly smaller than
"o.

3 Properties

The following system is obtained from Eqs. (10) and (11):
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@�(z; t)

@t
= ��(t)

2
c(z; t) (21)

@

@z

 
f(�(z; t))

@c(z; t)

@z

!
= �2(t)�(z; t)c(z; t) (22)

where f(�) = �2

�
[1 +Nk(�)]

�1, f(�)

�
2 C1 is a monotone increasing function of �, �(t) 6= 0

and �(t) � 0 are C1 functions of t, and � is
p
".

The system is subject to initial conditions

�(z; 0) = �0 > 0 (23)

as well as boundary conditions

c(0; t) = 1 (24)

@c

@z
(1; t) = 0 (25)

Physically, these correspond to a constant concentration at the outer surface (z = 0) and
a symmetry plane at z = 1. We can immediately �nd the initial value for the concentration
function c(z; t)

Lemma 1

The initial distribution of the function c(z; t) is given by:

c(z; 0) =
cosh 0(1 � z)

cosh 0
(26)

where

0 =

s
�0

f(�0)
�(0) (27)

Proof

Consider (22) at the initial time t = 0. Because of the initial condition (23) �(z; 0) = �0 is
a constant in z. Equation (22) is, therefore, a second order constant coe�cient ODE whose
solution is given by (26).

2

Lemma 2

The value of �(z; t) at the boundary point z = 0 is given by

�(0; t) = �0 �
1

2

Z t

0
�(� )d� (28)

Proof

We read (21) for z = 0 using the boundary condition (24) c(0; t) = 1. Integration yields
(28).
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Examining the boundary value for �(0; t) given in (28), it is clear that a positive solution
does not exist if

1

2

Z t

0
�(� )d� = �0 (29)

for some t. We de�ne the �rst time that (29) is satis�ed as the terminal time t�. If (29) is
never satis�ed we de�ne the terminal time t� as 1.

We assume now that before the terminal time, �(z; t) exists and is positive, to be precise

Assumption 1

There exists a unique positive solution �(z; t) for any 0 � t < t�, 0 � z � 1. This
solution is C1 in both z and t.

2

Comment:

>From Assumption 1, it follows that there exists a solution c(z; t) in the same time and
space intervals.

In the rest of this section we will derive properties of the solutions c(z; t) and �(z; t).
Study of these properties is important not only for the understanding of the behavior of the
in�ltration process, but also to �nd ways to speed up the process, in particular it will help
us to de�ne a successful process.

In the following Lemma we will consider the behavior of the concentration function c(z; t)

Lemma 3

The concentration function c(z; t) is a positive function for 0 � z � 1 for any 0 � t < t�.
Moreover, c(z; t) decreases as a function of z.

Proof

We multiply (22) by c(z; t) for every 0 � t < t� and integrate from some point z to the
point z = 1 taking into account that the spatial derivative of c(z; t) vanishes at z = 1. For
convenience we drop the dependence on t. We then get

�c(z)f(�(z))dc(z)
dz

=
Z 1

z
f(�(�))

 
dc(�)

d�

!2

d�

+�2

Z 1

z
�(�)c(�)2d� ; (30)

thus c(z)dc(z)
dz

is negative. It can never vanish, since, if c(z) vanishes at a point z0 then
the right hand side of (30) has to vanish and thus both c and dc

dz
vanish in the interval

[z0; 1]. By the standard theory of linear di�erential equations the solution c(z; t) must vanish

everywhere. So that c(z)dc(z)
dz

is strictly negative. Since c(0; t) = 1, it follows that c(z) is

positive and dc(z)

dz
is negative. Thus the lemma is proven.
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We turn now to the behavior of �(z; t) as a function of the spatial variable z, for any
�xed t.

Lemma 4

The function �(z; t) increases as a function of z. In particular

�(0; t) � �(z; t) < �0 (31)

where �(0; t) is given in (28).

Proof

Consider equation (21) and integrate with respect to t to get

�(z; t) = �0 �
1

2

Z t

0
�(� )c(z; � )d� (32)

By Lemma 3, c(z; t) is monotonically decreasing (in z), therefore �(z; t) is monotonically
increasing (in z).

The lower bound in (31) is a consequence of the monotonicity of �, the upper bound is
a result of (32) and the fact that c(z; t) is positive.

2

We can also establish an upper bound on the concentration function c(z; t):

Lemma 5

The concentration function c(z; t) is bounded by

c(z; t) � cosh 1(1 � z)

cosh(1)
(33)

where

1 =

s
�0

f(�0)
�(t) (34)

In particular if �(t) = �(0), is independent of time, then

c(z; t) � c(z; 0) (35)

Proof

Denote �rst by F (z; t) the solution of

@2

@z2
F (z; t)� 21F (z; t) = 0 (36)
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with the boundary conditions

F (0; t) = 1 ;
@F

@z
(1; t) = 0: (37)

The solution of (36) is clearly

F (z; t) =
cosh 1(1� z)

cosh(1)
(38)

We rewrite now equation (22) as

@2c(z; t)

@z2
+
fz

f

@c(z; t)

@z
= 2c(z; t) (39)

where

 =

vuut �(z; t)

f(�(z; t))
�(t) (40)

We multiply now (36) by c(z; t), (39) by F (z; t) and integrate between some z and 1,
taking into account that the spatial derivatives of both c(z; t) and F (z; t) vanish at z = 1,
to get:

�
 
F
@c

@z
� c

@F

@z

!
= �

Z 1

z

fz

f

@c

@z
Fd� +

Z 1

z
(2 � 21)Fcd� (41)

Now fz > 0 since f is monotone in � and � is monotone in z. By Lemma 3, @c(z;t)

@z
is

negative and so while F is positive. Also we have assumed that f(�)

�
is monotone so that

2 � 21 is positive. We conclude that the RHS of (41) is positive. Thus

F
@c

@z
� c

@F

@z
� 0 (42)

Leading to

@

@z

c(z; t)

F (z; t)
� 0 (43)

Since at z = 0, c(z; t) = F (z; t) = 1 we can conclude

c(z; t) � cosh 1(1 � z)

cosh(1)
(44)

We note that if �(t) is constant in time then 1 de�ned in (34) is exactly 0 de�ned in
(27) and thus F (z; t) = c(z; 0) proving (35).

2
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With Lemma 5 proven we can �nd a better lower bound on the pore function �(z; t) than
the one given in Lemma 4.

Lemma 6

The pore function �(z; t) is bounded from below by

�(z; t) � �0 �
Z t

0

1

2
�(� )F (z; � )d� (45)

where F (z; t) is given in (38).

Proof

By Lemma 5, c(z; t) � F (z; t). Substituting in (32) we get (45).

2

The above lemmas provide us with an insight into the behavior of the solution. We
summarize the main points as follows:

� For any �xed time t, the pore function �(z; t) is a monotonically increasing function
(in z), achieving the value �(0; t) (de�ned in (28)) at z = 0. The function �(z; t) for
any time is bounded from above by the initial value �0, and from below by (45).

� At the time t� the solution becomes discontinuous. In fact integrating (22) between
z = 0 and z = 1 we get

�f(�(0; t))@c(z; t)
@z

jz=0 =
Z 1

0
�2(t)�(�; t)c(�; t)d� (46)

Since the RHS is positive @c(z;t)

@z
jz=0 must tend to in�nity!!

� The concentration function c(z; t) is bounded from above by (44) and is monotonically

decreasing as a function of z for any t. The derivative at z = 0 is becoming more and
more negative.

� The function �(z; t) is a decreasing function in time.

4 Optimization

After establishing the properties of the solutions, we turn to discuss the concept of a suc-
cessful process. In CVI, it is generally desirable to produce a solid with a relatively uniform
porosity distribution.

The process obviously terminates if �(0; t) is small, and we would like �(z; t) to be uni-

formly small, i.e. we do not want �(z; t) to have a large variation in space. Consider therefore
the average of �:
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De�nition:

��(t) =
Z 1

0
�2(�; t)d� (47)

By a successful process we mean a process such that ��(t) � ��f for a given target value ��f
for some tf � t�. We will show that for each target value ��f there are functions �(t),�(t)
such that the process is successful. The question is how to pick �(t),�(t) such that the �nal
time tf is minimal.

We start by observing

Lemma 7

Let ��(t) de�ned in (47). Then ��(t) is a monotonically decreasing function of t.
Moreover

d��(t)

dt
=

�(t)

�2(t)
f(�(0; t))

@c(z; t)

@z
jz=0 (48)

Proof

Upon di�erentiating ��(t) we get

d��(t)

dt
= 2

Z 1

0
�(�; t)�t(�; t) (49)

= ��(t)
Z 1

0
�(�; t)c(�; t)d� (50)

= � �(t)

�2(t)

Z 1

0

@

@z

 
f(�(�; t))

@c(�; t)

@z

!
d� (51)

=
�(t)

�2(t)
f(�(0; t))

@c(z; t)

@z
jz=0 (52)

� 0 (53)

For the �rst two steps we used the di�erential equations (21) and (22), the last step used

the fact that c@c(z;t)
@z

is negative (see Lemma 3 (31)).

2

Lemma 7 implies that the average concentration �� is decreasing in time for any parameters
�(t), �(t). This however does not necessarily yield that the process is successful and that
there is a time tf � t� in which �� � ��f . We need a better estimate of ��. This is given in the
next lemma.

Lemma 8

Let ��(t) be the concentration average de�ned in (47). The following estimation holds
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��(t) � �0 �
Z t

0

�(� )

�(� )

q
�(0; � )f(�(0; � )) tanh�(� )

vuut �(0; � )

f(�(0; � ))
d� (54)

where �(0; t) is given in (28).

Proof

Let

d(z; t) =
cosh2(1� z)

cosh2
(55)

2 =

vuut �(0; t)

f(�(0; t))
�(t)

Clearly the function d(z; t) satis�es

@

@z

 
f(�(0; t))

@d(z; t)

@z

!
= �2(t)�(0; t)d(z; t) (56)

d(0; t) = 1 ;
@d

@z
(1; t) = 0 (57)

We multiply now (22) by d(z; t), (56) by c(z; t), subtract and integrate between z = 0
and z = 1. Taking the boundary conditions for c(z; t), d(z; t) into consideration we get:

�f(�(0; t))@c(z; t)
@z

jz=0 + f(�(0; t))
@d(z; t)

@z
jz=0 = (58)

�2(t)
Z 1

0
(�(�; t)� �(0; t))c(�; t)d(�; t)d�

+
Z 1

0
(f(�(�; t)� f(�(0; t))

@c(�; t)

@�

@d(�; t)

@�
d�

The right hand side of (58) is positive leading to

@c(z; t)

@z
jz=0 � @d(z; t)

@z
jz=0 (59)

= �2tanh(2) (60)

We turn now to (48) and integrate (in respect to the time t) to get

��(t) = ��0 +
Z t

0

�(� )

�2(� )
f(�(0; � ))

@c(z; � )

@z
jz=0d� (61)

Substituting (59) into (61) yields (54).
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2

We will show now that for any target value ��f there are functions �(t) and �(t) such that
the process is successful. In fact we will show that a successful process can be obtained by
choosing time independent �(t) = � and �(t) = �. In this case (28) reads

�(0; t) = �0 �
1

2
�t (62)

and the terminal time is given by

t� =
2�0
�

(63)

In the following Lemma we show that we can always choose � small enough to have a
successful process.

Lemma 9

Let �(z; t) be the solution of (21),(22) with �xed � and �. Let �� be de�ned in (47). Then

lim
�!0

��(
2�0
�
) = 0 (64)

Proof

We start by using (54) for �xed � and � and the expression (62) for �(0; t) to get

��(
2�0
�
) � ��0 �

Z 2�0
�

0
��(0; � )

tanh(g(�; �))

g(�; �))
d� (65)

Where

g(t; �) = �(t)

vuut �(0; t)

f(�(0; t))
(66)

We introduce now a change of variables

� =
��

2�0

To get

��(
2�0
�
) � ��0 � 2�20

Z 1

0
(1� �)

tanh(G(�; �))

G(�; �)
d� (67)

We use now the Lebesgue theorem and the fact that G(�; �) tends to zero as � tend to
zero to conclude that

lim�!0��(
2�0
�

) � ��0 � 2��0

Z 1

0
(1� �)d� = 0 (68)

This proves the Lemma.
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2

The parameters � and � are not independent. In fact � is proportional to �2 see (16).
Thus if we choose these parameters as constants as in Lemma 9, the time needed for the
completion of a successful process is very long. We would like to minimize that time. We
therefore formulate the following minimization problem.

Problem:

Let �(z; t),c(z; t) be the solution of (21-25) for some �(t), �(t). Let the average concen-
tration be de�ned in (47). Given a target concentration value ��f we de�ne the �nal time
tf(�; �) as the �rst time such that

��(tf ) � ��f

�nd min�(t);�(t) tf (�; �).

We did not solve this optimization problem, however Lemma 9 provides us with some
insight to the minimization process. In fact it is easier to treat the upper bound on the
average concentration given in (54).

In the following we will show an example in which some savings in the time needed to
reach the target value ��(tf) is realized by choosing � and � that are time dependent.

Consider the special case
�(t) = 2�2(t)

and
f(�) = �3

This expression for f(�) corresponds to the case were Nk << 1 and � = ��1. Physically,
the small value of Nk means that Knudsen di�usion contributions are not signi�cant. As the
porosity is �lled by the matrix phase this assumption will invariably break down, however,
with relatively large pressure and/or pore sizes, Nk will only become signi�cant at the end
of the process. In this case, the analysis presented below (i.e., where Nk was ignored) will
be reasonably accurate.

In this case we may rewrite the estimate (54) for the average concentration in the form

��(t) � �20 �
Z t

0
�(� )�(0; � )

tanh2

2
d� (69)

where

2(t) =
�(t)

�(0; t)
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and the pore function �(0; t) is given in Lemma 2. From this Lemma we can deduce that

� = �2 d
dt
�(0; t) (70)

We will look now for a design function �(t) such that 2 is independent of time.
This leads to an explicit expression for �(t), in fact solving

�2(t)

�(0; t)2
= R2

and taking into account that

�2(t) = � d

dt
�(0; t)

we get

�(0; t) =
�0

1 + �0R2t
(71)

�(t) =
jRj�0

1 + �0R2t
(72)

We can now substitute the result in (69) to get

��(t) � �20 �
tanh2

2

 jRj�20
(1 + �0R2t)2

� �20

!
(73)

The parameter R can be chosen to minimize the time needed for ��(t) to be less than the
target value. This approach leads to some savings, as described below.

5 Numerical Results

We have solved numerically the following set of equations�
�3cz

�
z
+ �2�c = 0 (74)

�t = ��c (75)

subject to the initial condition

�(z; 0) = 1 (76)

and boundary conditions

c(0; t) = 1 cz(1; t) = 0 (77)

To discretize (74) we used the pseudospectral Chebyshev method. In this method we choose
the grid points to be

xj =
1 + cos(�j

N
)

2
0 � j � N (78)
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N is the total number of grid points.
The spectral di�erentiation matrix takes the value of a given function at the gridpoints

xj and yields the values of the derivative of the interpolation polynomial at these points.
The points xj are the nodes of the Gauss Lobatto Chebyshev quaderature formula. The
matrix can be written explicitly:

Djk = 1

2

cj

ck

(�1)j+k

sin �
2N

(j+k) sin �
2N

(�j+k)
j 6= k ;

Djj = �1
2

xj

sin2( �
N
j)

j 6= 0; N ;

D00 = �DNN = 2N2+1

6

(79)

We apply the matrix Djk twice, once for the vector c taking into account the boundary
condition c(0; t) = 1 and then to �3cz now taking into account that cz(1; t) = 0. This yields
a linear system for the values of c(xj; t).

In the next stage we update � by the standard fourth order Runge-Kutta scheme.

� We �rst ran the scheme with constant � (� = �2) with the requirements that the
process stops when �� is less than 5% of the original value, and also that "(1; t) will
be less than 8%. The largest � (and therefore the shortest time to reach the end of
the process) that satis�ed the conditions was � = :235. The total time needed for the
process to settle was

tf1 =
2:458

�(0)
.

� We then used formula (72) to choose �(t) where �(0) = :3. Again �(t) = �2(t). The
process terminated successfuly at time

tf2 = :963tf1

.

� A better strategy was to use (72) until � became smaller than :25 and then to raise it
to :27 and reapply (72). Here too �(t) = �2(t). The process terminated here at

tf3 = :935tf1

Whereas the savings do not seem extremely signi�cant, they indicate that one can get better
results by varying the design parameters � and � with time.

� Another possibility is to change the relationship between � and � in time. This is
motivated by Lemma 9. It is clear from this Lemma that for the process to converge
we need � small. It is also clear that the time for the process to settle is proportional
to (�)�1, thus one wants to minimize � to get a successful process and to maximize �
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to reduce time. We ran our problem with �(0) = :4 and �(0) = �2(0). We then varied
� in time according to (72) while holding � �xed. We got convergence at

tf4 = :397tf1!!!

(the �nal � was :2). This result indicates that great savings can be obtained by choosing
appropriate values for the design functions �(t) and �(t).

6 Conclusions

In summary, the mathematical results presented here are potentially important in several
ways. First they provide detailed information on the solutions in space and in time, as
well as upper and lower bounds. The formulation and general analysis provide a basis for
understanding the in�ltration process in terms of only two parameters: � and �. The
treatment of the optimization problem makes it possible to assess optimal (i.e. minimal)
in�ltration times concisely. The observation that the minimum time can be dramatically
decreased by varying � with time is particularly important because of the long times that
are typically associated with CVI. Varying � while � is constant requires varying one or
more of the relevant processing conditions (e.g., T;Cr, or P ) in a controlled way. A detailed
analysis of these possibilities will be presented elsewhere ([12]).
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